
UNCLASSIFIED

Defense Technical Information Center
Compilation Part Notice

ADP023716
TITLE: Software Security Issues in Embedded Systems

DISTRIBUTION: Approved for public release, distribution unlimited

This paper is part of the following report:

TITLE: Proceedings of the ARO Planning Workshop on Embedded
Systems and Network Security Held in Raleigh, North Carolina on
February 22-23, 2007

To order the complete compilation report, use: ADA485570

The component part is provided here to allow users access to individually authored sections
f proceedings, annals, symposia, etc. However, the component should be considered within

[he context of the overall compilation report and not as a stand-alone technical report.

The following component part numbers comprise the compilation report:
ADP023711 thru ADP023727

UNCLASSIFIED

Software Security Issues in Embedded Systems

Somesh Jha
Computer Sciences Department,

University of Wisconsin, Madison, WI 53706.

1 Introduction

Embedded systems and networks are becoming increasingly prevalent in critical sectors, such as medical
and defense sectors. Therefore, malicious or accidental failures in embedded systems can have dire conse-
quences. Hence, the integrity of embedded software infrastructures, such as configuration and code, is of
paramount importance. The autonomous nature of embedded systems also poses new challenges in the con-
text of system integrity. Since embedded systems are reactive, unexpected or malicious environment events
or can cause failures, which can have dire consequences in critical sectors. Embedded systems and networks
also often have to operate autonomously in a dynamic environment. Therefore, an embedded system has to
adapt its behavior to the change in environment or the overall goal. Unauthorized or unverified updates to
the infrastructure of an embedded system can also compromise its integrity.

In recent years, there have been significant advances in the area of software security. There have been
various techniques developed in the context of software security, such as automated signature generation,
vulnerability assessment, and detecting malicious behavior. However, all these techniques are not directly
applicable in the context of embedded systems because of following reasons:

" Dynamic and configurable environment: Embedded systems are generally deployed in environments
that are highly dynamic and configurable. For example, the environment of an embedded system
deployed in a battlefield is extremely dynamic.

" Changing functional requirements: Functional requirements of an embedded system change over
time. Functional requirements of an embedded system deployed in a battleship change with mission
of the operation.

" Interconnected network of components: Frequently an embedded system is a complex network of
components. Therefore, a malicious or accidental fault in a component can lead to a complex cascade
of events in the network.

" Recovery is paramount: Generally, techniques developed in the realm of software security focus on
detection and prevention. Embedded systems are frequently deployed in mission critical applications
where consequences of failures can be dire. Therefore, recovery from failures is extremely important
in the context of embedded systems.

2 Promising Research Directions

Extending existing techniques in software security to handle the four abovementioned characteristics of
embedded systems is an important research direction. I will provide details of two such research directions.

I

" Vulnerability assessment and prevention in presence of a dynamic environment: Existing techniques
for vulnerability assessment have been developed for systems (such as servers) whose environments
are relatively static. Extending dynamic and static analysis techniques for vulnerability assessment
and prevention for systems with dynamic environments is a very interesting research direction. I envi-
sion that existing techniques will have to be extended to incorporate specification of the environment.
In this context, an interesting research direction would be to generate vulnerability signatures [2, 6]
for systems with dynamic environments. I envision the signatures in this case will be parametrized by
a specification of the environment, i.e., signatures will only be valid if certain environment conditions
are satisfied.

" Recovery from malicious or accidental faults: As mentioned before an embedded system is a complex
network of components. Therefore, a fault in a component can create a ripple of events throughout

the network. This makes recovery for embedded systems extremely challenging. A causality graph
for an embedded system is a graph where the nodes are events and edges are the causality between
events (e -+ c' means that event e can cause event e'). Techniques for discovering a causality graph
of an embedded is essentially for recovering from faults. Essentially the effects of a fault can be
determined from examining the causality graph. Techniques for constructing attack graphs [1, 5] and
alert correlation [3, 4]

References

[1] P. Ammann, D. Wijesekera, and S. Kaushik. Scalable, graph-based network vulnerability analysis. In

ACM Conference on Computer and Communications Security, 2002.

[2] D. Brumley, J. Newsome, D. Song, H. Wang, and S. Jha. Towards automatic generation of vulnerability
based signatures. In IEEE Symposium on Security and Privacy, pages 21-24, May 2006.

[3] F. Cuppens and A. Mige. Alert correlation in a cooperative intrusion detection framework. In IEEE
Symposium on Security and Privacy, 2002.

[4] P. Ning, Y. Cui, and D. S. Reeves. Constructing attack scenarios through correlation of intrusion alerts.
In ACM Conference on Computer and Communications Security, 2002.

[5] 0. Sheyner, J. W. Haines, S. Jha, R. Lippmann, and J. M. Wing. Automated generation and analysis of
attack graphs. In IEEE Symposium on Security and Privacy, 2002.

[6] H. J. Wang, C. Guo, D. R. Simon, and A. Zugenmaier. Shield: Vulnerability-driven network filters
for preventing known vulnerability exploits. In In the Proceedings ofACM SIGCOMM, Portland, OR,
August 2004.

2

Software Security Issues in
Embedded Systems

Somesh Jha
University of Wisconsin

Software Security

* Vulnerability Assessment
- Analysis tools for discovering vulnerabilities in

source code and binaries
* Automated Signature Generation

- Generating signatures that filter our malicious
inputs

* Malicious Code Detection
- Detecting whether a binary has malicious

behavior

Embedded Systems

* Increasingly used in critical sectors
- Defense, medical, power,...

* Malicious and accidental failures can have
dire consequences

* Embedded systems are not "all hardware"
- They have software too©

* Autonomous nature

Dynamic and Configurable
Environment

* Embedded systems are highly
configurable
- They have to work in many different scenarios

* Environment is highly dynamic
- Think about embedded systems in a

battlefield
- Embedded system in a vehicle

2

Changing Functional Requirements

* Functional requirements of embedded
systems change over time

* Embedded system deployed in a
battlefield
- Functional requirements change with mission

Interconnected Network of
Components

* Embedded system are of a complex
network of components

* Components might be hardware or
software

* Source code might be available for some
components

* COTS components (only binary available)
* Failure can create cascading events

3

Recovery is Paramount

* Embedded systems used in critical
applications

* In some cases recovery is paramount
* Recovery complicated by complex

interaction of events
- Failure can cause a complex cascade of

events

Three Software Security Projects

* Automated generation of vulnerability
signatures

* Retrofitting legacy code

* Static analysis of binaries
- Malware Detection

4

Motivating Scenario for
Automatic Signature GenerationL Ul

Adversary efense Victim

Exploit

Signature Generator

Exploit

Adversary Victim

5

Adversary Victim

Many, perhaps infinite,
Polymorphic variants

Goals for Automatic Signature
Generation

* Create signature that matches exploits
* Reason about signature accuracy
-Does it match legitimate traffic (false +)?
-Does it miss exploits (false -)?

6

Our Contribution:
A Language-Centric Approach

. Focus on the
language of the vulnerability

0 Reason about signature via
language

0 Language captures all exploits

New methods for
Automatic vulnerability
signature creation

OOpens doors to PL techniques

Language of a Particular
Vulnerability

A vulnerability is defined by:
1. What - The Vulnerability Condition:

Necessary conditions to violate safety

2. Where - The Vulnerability Point:
Location vulnerability condition first satisfied

The Vulnerability Language is all input
strings reaching the vulnerability point

meeting the vulnerability condition.

7

HTTP-Iike Running Example
1 . int check http(char input[j9])
2. {
3. if(strcmp(input, "get",3) != 0 I
4. strcmp(input, "head",4) !=0) return -1;

5. if(input[4] != TI) return -1;

6. intI =5;
7. while(inputII] != '\n'){ 1++;}
8. inputl] = 0;

9. return 1; Our implementation
10.} is on binaries

Example Input: get Iaaaa\n
1. int check http(char input[19])
2. {
3. if(strcmp(input, "get",3) != 0 I
4. strcmp(input, "head",4) !=0) return -1;

5. if(input[4] != TI) return -1;

6. intI =5;
7. while(inputII] != '\n'){ 1++;}
8. inputl] = 0; -= Vulnerability Point
9. return 1;
10.}

8

Example Input: get Iaaaa\n
1 . int check http(char input[j9])
2. {
3. if(strcmp(input, "get",3) != 0 11
4. strcmp(input, "head",4) !=0) return -1;

5. if(input[4] != TI) return -1;

6. intI =5;
7. while(inputjl] != '\n'){ 1++;}
8. inputjl] = 0; VuInerblt
9. return 1; Conit i ity~
10.} odto:I>

Retrofitting legacy code
Need systematic techniques to
retrofit legacy code for security

Legacy Retrofitted
code... >cd

INSECURE

9

Retrofitting legacy code
Need systematic techniques to
retrofit legacy code for security

* Enforcing type safety
- OCured

* Partitioning for privilege separation
- PrivTrans

Enforcing authorization policies

Resource user

Operation request tResponse

Resource manager

Allowed? /NO

(Alice, /etc/passwd, File Read>

10

Retrofitting for authorization
* Mandatory access control for Linux

- Linux Security Modules

- SELinux o m a '

* Painstaking, manual procedure
- Trusted X, Compartmented-mode workstation,

Xl 1/SELinux [I

* Java Virtual Machine/SELinux
* IBM Websphere/SELinux p-, ,,

Retrofitting lifecycle
1. Identify security-sensitive operations
2. Locate where they are performed in code
3. Instrument these locations

Security-sensitive Source Code Policy checks
operations
Int EVent1Create Can the client
Destroy receive this

Copy Inpu t-Even t?
Paste

map

Problems A r

Time-consuming
- X1 1/SELinux - 2 years K
- Linux Security Modules - 2 years [

Error-prone I , , 4]

- Violation of complete mediation
- Time-of-check to Time-of-use bugs

Our approach

Reduces manual effort

Retrofitting takes just a few hours
- Automatic analysis: - minutes
- Interpreting results: - hours

Reduces errors
Basis to prove security of retrofitted code

12

Maispec: Self-Propagation by Email
psh 10h

push eax
push edi
caLL connect Connect
push esi
push eax
push [ebp+hMem]
caLL wsprintfA
add esp, OCh
push [ebp+hMem]
caLL LstrtenA
push 0
push eax
push [ebp+hMem]
push ebx
push eax
push ecx

g -x

push edi&
caLL send 5n r,-"HO"

Netsky.B

Building a Real Maispec
"Sen~d Email" "Read Own Exe. hqmage"P

Se nd.(XEL. :=pn

se-nd(X" DATX' A:rad

senr:d, X.

13

Maispec: Self-Propagation by Email
AND-OR graph

X:=socket()

connect(X) S:=process_nameo

send(X,"EHLO") Z:=open(S)

send(X"DATA") Y:=read(Z)

St Construction can be automated
through asecmining.

Maispec Const raints
(7) ,,,Dependence constraint:

X:ske(X after socket =X before connect

connet(X)S:=process nameo
Local constraint

send(X,"EHLO") Z:=open(S)

Y:=red(Z)Dependence constraint

14

Maispecs Benefits

Symbolic variables
X =socket(

connect(X S -process namne(Constraint- based
execution order

send(X"EHLO' Z:=open(S)

sendX,"DTA"Independent of
send(XT) Yra()obf uscation

artifacts

Expressive to describe even obfuscated beaor.

Maispec Detection Strategies

X =socket(

connect(X S:=process namne) D nmcaayi
send(X"EHLO' Z:=open(S)

send(X"DATA' Y=read(Z) * Host-based I DS
send(XT)

StrigEqu1(T Thase64(V))

* Inline Reference
Monitors

Maspcsare needn of detectionmehd

15

Detection of Malicious Behavior

Binary ec(

File 8XELO

Goal: Find a prgampthtat matches the malspec.

Find A Malicious Program Path

1~16

Stable Environment Assumption

* All the above mentioned work assumes a
"nearly" stable environment

* Example: web server
- Is configurable, but the environment is not that rich
- Environment is not too dynamic
- Not rich interaction with other components

* Incorporating "dynamic environments" into the
techniques described before is a challenge

Vulnerability Assessment in
Presence of a Dynamic

Environment
* Dynamic and static analysis techniques

assume a relatively stable environment
* Parameterized static analysis

- Parameterize static analysis with environment
assumptions

- Similar to assume-guarantee reasoning in
model checking

* Parameterized vulnerability signatures

17

Recovery from Failures

* A failure (malicious or benign) can cause a
complex cascade of events

* Need to understand the complex cascade
of events caused by a failure

* Need to analyze the complex network in
components in totality
- Scalability
- Compositional analysis

Questions

* My web page
- http://www.cs.wisc.edu/-jha

18

